Step of Proof: neg_assert_of_eq_int
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
neg
assert
of
eq
int
:
1.
x
:
2.
y
:
(
(
(
x
=
y
)))
x
y
latex
by
InteriorProof
((RWH (LemmaC `assert_of_eq_int`) 0)
CollapseTHENA ((Auto_aux (first_nat 1:n
CollapseTHENA ((Au
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
(
(
x
=
y
))
x
y
C
.
Definitions
P
Q
,
P
Q
,
P
Q
,
P
Q
,
a
b
T
,
,
t
T
,
x
:
A
.
B
(
x
)
Lemmas
assert
of
eq
int
,
not
functionality
wrt
iff
,
iff
functionality
wrt
iff
,
nequal
wf
,
eq
int
wf
,
assert
wf
,
not
wf
origin